Show simple item record

dc.contributor.advisorCaitlin T. Mueller.en_US
dc.contributor.advisorCaitlin T. Mueller.en_US
dc.contributor.authorBrown, Nathan C.(Nathan Collin)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Architecture.en_US
dc.date.accessioned2020-01-23T16:57:22Z
dc.date.available2020-01-23T16:57:22Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123573en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D. in Architecture: Building Technology, Massachusetts Institute of Technology, Department of Architecture, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 201-219).en_US
dc.description.abstractDuring the design process in architecture, building performance and human experience are increasingly understood through computation. Within this context, this dissertation considers how data science and interactive optimization techniques can be combined to make simulation a more effective component of a natural early design process. It focuses on conceptual design, since technical principles should be considered when global decisions are made concerning the massing, structural system, and other design aspects that affect performance. In this early stage, designers might simulate structure, energy, daylighting, thermal comfort, acoustics, cost, and other quantifiable objectives. While parametric simulations offer the possibility of using a design space exploration framework to make decisions, their resulting feedback must be synthesized together, along with non-quantifiable design goals.en_US
dc.description.abstractPrevious research has developed optimization strategies to handle such multi-objective scenarios, but opportunities remain to further adapt optimization for the creative task of early building design, including increasing its interactivity, flexibility, accessibility, and ability to both support divergent brainstorming and enable focused performance improvement. In response, this dissertation proposes new approaches to parametric design space formulation, interactive optimization, and diversity-based design. These methods span in utility from early ideation, through global design exploration, to local exploration and optimization. The first presented technique uses data science methods to interrogate, transform, and, for specific cases, generate design variables for exploration. The second strategy involves interactive stepping through a design space using estimated gradient information, which offers designers more freedom compared to automated solvers during local exploration.en_US
dc.description.abstractThe third method addresses computational measurement of diversity within parametric design and demonstrates how such measurements can be integrated into creative design processes. These contributions are demonstrated on an integrated early design example and preliminarily validated using a design study that provides feedback on the habits and preferences of architects and engineers while engaging with data-driven tools. This study reveals that performance-enabled environments tend to improve simulated design objectives, while designers prefer more flexibility than traditional automated optimization approaches when given the choice. Together, these findings can stimulate further development in the integration of interactive approaches to multi-objective early building design. Key words: design space exploration, conceptual design, design tradeoffs, interactive design tools, structural design, sustainable design, multi-objective optimization, data science, surrogate modelingen_US
dc.description.statementofresponsibilityby Nathan C. Brown.en_US
dc.format.extent219 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectArchitecture.en_US
dc.titleEarly building design using multi-objective data approachesen_US
dc.typeThesisen_US
dc.description.degreePh. D. in Architecture: Building Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Architectureen_US
dc.identifier.oclc1135799547en_US
dc.description.collectionPh.D.inArchitecture:BuildingTechnology Massachusetts Institute of Technology, Department of Architectureen_US
dspace.imported2020-03-09T19:58:11Zen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record