MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The good, the bad, and the facts : multimodal representation of medical conversations for patient understanding

Author(s)
Berry, Jaclyn(Jaclyn Elizabeth Hom)
Thumbnail
Download1135802053-MIT.pdf (3.723Mb)
Alternative title
Multimodal representation of medical conversations for patient understanding
Other Contributors
Massachusetts Institute of Technology. Department of Architecture.
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Terry Knight and Randall Davis.
Terry Knight and Randall Davis.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Medical patients face significant challenges for managing their health information. In particular, cancer patients have a uniquely difficult experience where they must endure the physical and emotional effects of their illness while simultaneously navigating overwhelming amounts of medical information. In this thesis, I focus on the challenge of capturing, reviewing and extracting information from medical appointments for patients enduring serious health conditions such as cancer. First, I propose a novel multimodal-interface to help patients review and understand information they received from conversations with their doctors. This interface captures medical conversations as text and audio, with important positive and negative information highlighted. I conducted 25 user studies where I enacted fictional conversations between a doctor and a patient to evaluate whether this method of representing information would help patients review and understand their appointments. Results from the user studies show that the web interface serves as a useful tool for reviewing the content of the conversations, however its effect on patient understanding cannot yet be determined. Second, I propose a machine learning algorithm to automatically classify the positive and negative information in medical conversations based on analysis of the text and prosody in speech. The model with the highest performance on my dataset achieved an accuracy of 90.6% and Fl-score of 0.888. While I focus on challenges within the medical field, findings from this thesis may be relevant to emotional conversations in any setting such as sportscasting, political debates and more.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: S.M., Massachusetts Institute of Technology, Department of Architecture, 2019
 
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 131-136).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/123578
Department
Massachusetts Institute of Technology. Department of Architecture; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Architecture., Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.