Show simple item record

dc.contributor.advisorMichael T. Laub and Christopher A. Voigt.en_US
dc.contributor.authorMcClune, Conor James.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biology.en_US
dc.date.accessioned2020-02-10T21:37:03Z
dc.date.available2020-02-10T21:37:03Z
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123704
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2019en_US
dc.description"August 2019." Cataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractGene duplication is a common and powerful mechanism by which cells create new signaling pathways, but recently duplicated proteins typically must become insulated from each other, and from other paralogs, to prevent unwanted cross-talk. A similar challenge arises when new sensors or synthetic signaling pathways are engineered within cells or transferred between genomes. How easily new pathways can be introduced into cells depends on the density and distribution of paralogous pathways in the sequence space defined by their specificity-determining residues. Here, I directly probe how crowded sequence space is by generating novel two-component signaling proteins in Escherichia coli using cell sorting coupled to deep-sequencing to analyze large libraries designed based on coevolution patterns. I produce 58 new insulated pathways, in which functional kinase-substrate pairs have different specificities than the parent proteins, and demonstrate that several new pairs are orthogonal to all 27 paralogous pathways in E. coli. Additionally, I readily identify sets of 6 novel kinase-substrate pairs that are mutually orthogonal to each other, significantly increasing the two-component signaling capacity of E. coli. These results indicate that sequence space is not densely occupied. The relative sparsity of paralogs in sequence space suggests that new, insulated pathways can easily arise during evolution or be designed de novo. I demonstrate the latter by engineering a new signaling pathway in E. coli that responds to a plant cytokinin without cross-talk to extant pathways. The work in this thesis also demonstrates how coevolution-guided mutagenesis and sequence-space mapping can be used to design large sets of orthogonal protein-protein interactions.en_US
dc.description.statementofresponsibilityby Conor James McClune.en_US
dc.format.extent127 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiology.en_US
dc.titleEngineering orthogonal signaling pathways to probe sequence space capacityen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.identifier.oclc1138019425en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Biologyen_US
dspace.imported2020-02-10T21:37:02Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentBioen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record