Show simple item record

dc.contributor.advisorGeorgia Perakis.en_US
dc.contributor.authorBiggs, Max(Max Ray)en_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2020-02-10T21:37:21Z
dc.date.available2020-02-10T21:37:21Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123709
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 227-241).en_US
dc.description.abstractThe main contributions of this thesis concern addressing challenges in the field of prescriptive optimization, and how machine learning techniques can be incorporated into solving data-driven operational optimization problems. In chapter 2, we provide a data-driven study of the secondary ticket market. In particular we are primarily concerned with accurately estimating price sensitivity for listed tickets. We propose a semi-parametric model for measuring heterogeneous treatment effects using the concept of orthogonalization in the classification setting, and derive a novel loss function which can be solved using a range of off-the-shelf machine learning methods. Over a wide range of synthetic data experiments, we show how this approach beats state-of-the-art machine learning and causal inference methods for estimating treatment effects in classification tasks.en_US
dc.description.abstractIn chapter 3, we show how to solve optimization problems with random forest objective functions and general polyhedral constraints. We show how to formulate this problem using MIO techniques and show this formulation can be decomposed and solved iteratively using Pareto-optimal Benders cuts. We also provide analytical guarantees on an approach that approximates a large scale random forest optimization problem by optimizing over a smaller forest, and develop heuristics based on ideas from cross validation. In chapter 4, we study a new problem where nurse practitioners need to be dynamically routed to patients' houses as service requests are received. We show how to solve using Approximate Dynamic Programming and develop methods to solve ADP's with combinatorial action spaces and non-linear cost-to-go functions approximated using a tree or tree ensemble approximation.en_US
dc.description.abstractIn chapter 5, we propose a Markov Decision Process (MDP) model for the tramp shipping that captures the dynamic and stochastic nature of spot cargo availability. We propose a novel methodology for solving this MDP in a tractable way, by introducing a ranking algorithm which is equivalent to solving the DP. We show that our ranking algorithm outperforms several benchmarks and the average performance of ships operating on the spot market in practice by between 4% and 32%.en_US
dc.description.statementofresponsibilityby Max Biggs.en_US
dc.format.extent241 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titlePrescriptive analytics in operations problems : a tree ensemble approachen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Management
dc.identifier.oclc1138021821en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Sloan School of Management, Operations Research Centeren_US
dspace.imported2020-02-10T21:37:21Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentSloanen_US
mit.thesis.departmentOperResen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record