Show simple item record

dc.contributor.advisorW. Rockwell Geyer.en_US
dc.contributor.authorCorlett, William Bryce.en_US
dc.contributor.otherJoint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.en_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2020-02-10T21:39:43Z
dc.date.available2020-02-10T21:39:43Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123735
dc.descriptionThesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 115-125).en_US
dc.description.abstractThis thesis addresses the dynamics of estuarine networks, based on hydrographic observations in Newark Bay, a sub-estuarine network connected to the Hudson River estuary through New York Harbor. Estuarine networks differ from simple estuaries in that they may have multiple connections to the ocean, multiple freshwater sources, and often contain complex junctions between estuarine segments. The Newark Bay estuarine network is connected to the sea through two tidal straits, and is fed by multiple internal and external sources of fresh water. The estuarine network is also naturally divided into a series of reaches, each of which is characterized by a different cross-sectional geometry. This thesis focuses on the hydrographic variability and varying exchange flow within the Newark Bay estuarine network. Shipboard hydrographic measurements reveal the time-dependent formation of salinity fronts between reaches of the estuary.en_US
dc.description.abstractEach front is generated by a different mechanism; however, all are generated by tidal flow through channel junctions during ebb tide, and are advected landward during flood tide. Mooring-based measurements confirm that these fronts form during nearly every tidal cycle, and that the fronts are associated with substantial changes in local salinity on tidal timescales. The effect of tidal processes, such as frontal advection, on the exchange flow is investigated by applying the isohaline total exchange flow (TEF) framework to mooring-based observations in multiple reaches of the estuarine network. This reveals that over half of the exchange flow is driven by tidal processes at all sites within the estuary. Both the TEF-based salt balance and the standard Eulerian salt balance indicate that tidal processes are also responsible for at least half of the landward salt flux at most sites within the estuary; TEF and Eulerian salt balances are nearly identical.en_US
dc.description.abstractTidal processes within the estuary are in large part associated with fronts. The large influence of tidal processes on the exchange flow in Newark Bay is thus likely due to the prevalence of channel junctions within the estuarine network.en_US
dc.description.statementofresponsibilityby William Bryce Corlett.en_US
dc.format.extent125 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectJoint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.subject.lcshOceanography.en_US
dc.subject.lcshMarine sciences.en_US
dc.titleDynamics and kinematics of an estuarine networken_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentJoint Program in Oceanography/Applied Ocean Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.identifier.oclc1138877306en_US
dc.description.collectionPh.D. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution)en_US
dspace.imported2020-02-10T21:39:39Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEAPSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record