Show simple item record

dc.contributor.advisorGerman A. Prieto.en_US
dc.contributor.authorFlorez Torres, Manuel Alberto.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.en_US
dc.date.accessioned2020-02-10T21:39:46Z
dc.date.available2020-02-10T21:39:46Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123736
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 91-105).en_US
dc.description.abstractThe fundamental physical processes to generate earthquakes contradict the occurrence of intermediate-depth (80-350 km) seismicity: both pressure and temperature increase with depth, which inhibits fracture, unstable sliding, and promotes ductile flow. Classic experiments on olivine, the main mineral that composes the mantle, show that the shear stresses necessary to overcome the high normal stresses imposed by the overburden pressure are unsustainable at these depths. In subduction zones, the dehydration of the descending oceanic lithosphere might enable the observed brittle-like behavior; but this hypothesis remains controversial, as there are other viable alternatives. Improving our understanding of the intermediate-depth seismicity relies on assembling accurate and systematic seismological observations, which I tackle here in my graduate work. First, I developed a relocation method that uses array processing in such a way that velocity model biases are reduced.en_US
dc.description.abstractThe technique identifies and picks the arrival of depth phases and perform a relative relocation scheme. When high-quality data is available, hypocentral depth can be estimated with a precision of a few kilometers. I systematically applied this technique to build a new global catalog of intermediate depth seismicity. At depths larger than about 50 km, most subducting slabs feature two distinct layers of seismicity, known as Double Seismic Zones (DSZ). I used my relocated catalog to characterize 32 slab segments, sampling a diverse range of tectonic environments. I was able to clearly resolve the geometrical structure of DSZs and to separately study subducting crust (upper layer) and lithospheric mantle (lower layer) earthquakes.en_US
dc.description.abstractI performed a careful analysis of the frequency-size statistics for each layer, finding consistently larger b-values (proportion of low-to-high magnitude events), correlating with slab age, for the upper plane of the lithosphere while a roughly constant values for the lower plane. Provided that b-values are indicative of stress regime, this suggests a different mechanism for earthquakes happening in the upper and in the lower plan of the subducting oceanic lithosphere.en_US
dc.description.statementofresponsibilityby Manuel A. Florez Torres.en_US
dc.format.extent105 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.titleA global study of double seismic zones and its implications for the mechanism of intermediate-depth earthquakesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.identifier.oclc1138877644en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciencesen_US
dspace.imported2020-02-10T21:39:46Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEAPSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record