Show simple item record

dc.contributor.advisorW. Brechner Owens, Robert E. Todd and Kristopher B. Karnauskas.en_US
dc.contributor.authorJakoboski, Julie K.(Julie Kathryn)en_US
dc.contributor.otherJoint Program in Physical Oceanography.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.en_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.coverage.spatials-ec---en_US
dc.date.accessioned2020-02-10T21:39:53Z
dc.date.available2020-02-10T21:39:53Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123737
dc.descriptionThesis: Ph. D., Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 131-137).en_US
dc.description.abstractThe Galápagos Cold Pool (GCP) is a region of anomalously cold sea surface temperature (SST) just west of the Galápagos Archipelago. Modeling studies have shown that the GCP is maintained by wind- and current-driven upwelling. The Galápagos Archipelago lies on the equator, in the path of the Pacific Equatorial Undercurrent (EUC) as it flows eastward across the Pacific at the depth of the thermocline. It is hypothesized that the EUC upwells into the GCP as it reaches the topographical barrier of the Galápagos Archipelago. The path of the EUC in the vicinity of the archipelago is not well understood. The 'Repeat Observations by Gliders in the Equatorial Region' (ROGER) program deployed a fleet of Spray autonomous underwater gliders in the region just west of the Galápagos Archipelago from 2013 - 2016 with the goal of continuously occupying three transects that form a closed area, with the archipelago as the eastern boundary.en_US
dc.description.abstractGliders obtained subsurface measurements of temperature, salinity, and velocity with unprecedented temporal and spatial resolution. These measurements are used to observe the path of the EUC as it bifurcates into a north and south branch around the Galápagos Archipelago. Net horizontal transport into the volume defined by the closed area formed by the glider transects is used to estimate an average vertical velocity profile in the region of the GCP, indicating upwelling in the upper 300 m. The bifurcation latitude of the EUC, estimated to be approximately 0.4°S from volume transport as a function of salinity, is coincident with the meridional center of the archipelago, suggesting the bifurcation latitude is topographically controlled. Ertel potential vorticity and a Bernoulli function are qualitatively conserved, supporting an inertial model of the EUC.en_US
dc.description.abstractAverage spectral variance from Argo profiling float observations is used to show that tropical instability waves propagate with frequency and wavelength consistent with linearized, equatorial [beta]-plane model results and may impact the GCP, according to their vertical structure.en_US
dc.description.statementofresponsibilityby Julie K. Jakoboski.en_US
dc.format.extent137 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectJoint Program in Physical Oceanography.en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.subject.lcshGalapagos.en_US
dc.subject.lcshOcean temperature.en_US
dc.subject.lcshHydrography.en_US
dc.subject.lcshOceanography.en_US
dc.titleEquatorial ocean dynamics impacting upwelling west of the Galápagos Archipelagoen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentJoint Program in Physical Oceanographyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.identifier.oclc1138886999en_US
dc.description.collectionPh.D. Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution)en_US
dspace.imported2020-02-10T21:39:52Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEAPSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record