MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inference and learning for rigid-body models of manipulation

Author(s)
Fazeli, Nima.
Thumbnail
Download1139337545-MIT.pdf (16.47Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Alberto Rodriguez.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we explore a spectrum of inference and modeling approaches for robotic manipulation. Particularly, we investigate the broad class of rigid-bodies undergoing frictional interactions. We begin by deriving a contact-implicit system identification formulation for articulated rigid-bodies. Assuming we have a physical model of the system, the objective is to derive system parameters and contact forces for articulated rigid-bodies without enumerating and inferring contact formations. We then ground this approach by investigating the fidelity of rigid-body contact models and their identification. We evaluate the fidelity of the contact models by empirically studying their predictive performance and parameter identification properties in a planar impact task. Next, we address one approach to augmenting these contact models with data. The objective here is to improve model fidelity through an optimization of model parameters and residual error learning for systems with prior physics models. We conclude the thesis by building models from data for tasks with rich latent structure and no prior physics models. Here, the objective is to learn data-efficient hierarchical models of physics that incorporate force and tactile sensory modalities and are amenable to inference, controls, and planning.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 139-146).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/123769
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.