MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The fewest clues problem

Author(s)
Demaine, Erik D; Ma, Fermi; Schvartzman, Ariel; Waingarten, Erik; Aaronson, Scott
Thumbnail
DownloadAccepted version (560.6Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
When analyzing the computational complexity of well-known puzzles, most papers consider the algorithmic challenge of solving a given instance of (a generalized form of) the puzzle. We take a different approach by analyzing the computational complexity of designing a “good” puzzle. We assume a puzzle maker designs part of an instance, but before publishing it, wants to ensure that the puzzle has a unique solution. Given a puzzle, we introduce the FCP (fewest clues problem) version of the problem: Given an instance to a puzzle, what is the minimum number of clues we must add in order to make the instance uniquely solvable?We analyze this question for the Nikoli puzzles Sudoku, Shakashaka, and Akari. Solving these puzzles is NP-complete, and we show their FCP versions are Σ2P-complete. Along the way, we show that the FCP versions of TRIANGLE PARTITION, PLANAR 1-IN-3 SAT, and LATIN SQUARE are all Σ2P-complete. We show that even problems in P have difficult FCP versions, sometimes even Σ2P-complete, though “closed under cluing” problems are in the (presumably) smaller class NP; for example, FCP 2SAT is NP-complete.
Date issued
2018-11
URI
https://hdl.handle.net/1721.1/123865
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Theoretical Computer Science
Publisher
Elsevier BV
Citation
Demaine, Erik D. et al. "The fewest clues problem." Theoretical Computer Science 748 (November 2018): 28-39 © 2018 Elsevier B.V.
Version: Author's final manuscript
ISSN
0304-3975

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.