MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engineering LuxR-type quorum sensing proteins for new functions

Author(s)
DeLateur, Nicholas Andrew.
Thumbnail
Download1142098829-MIT.pdf (12.15Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Ron Weiss.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Bacteria communicate information in a process known as quorum sensing, actuating downstream gene expression based on cell-cell signalling. Cell-cell signalling allows for complex and multi-cellular behavior otherwise impossible with unicellular logic. However, building complex cell-cell signalling genetic circuits is currently challenged by a lack of tools for the fine-tuning and control of quorum sensing systems. Although derived from distinct biochemical entities, the diffusion rate and expression profile of a given LuxR-family module are not modular. Here, we develop chimeric proteins that can accept the small molecule cognate belonging to the las operon from Pseudomonas aeruginosa while activating the cognate promoter of other quorum sensing systems. The ability to swap in a modular fashion the ligand-binding domain and DNA-binding domain of transcription factors allows precise control of diffusion rates and expression profiles independently. Methods to control quorum sensing by transcriptional repression can be slow because they rely on dilution and degradation, require promoter engineering, or lack specificity against only a single signalling pathway. Here, we develop proteins to knock down expression from LuxR-type quorum sensing transcription factors utilizing molecular sequestration for fast, tunable, and specific control. Natural sequesters and engineered truncation proteins are successfully applied against 5 of the most prevalent LuxR-type transcription factors (LasR, LuxR, RhlR, RpaR, and TraR) as well as the chimeric transcription factors developed in this work. Chimeric LuxR-type quorum sensing proteins and proteins for the sequestration of LuxR-type quorum sensing proteins provide powerful new parts to facilitate building sophisticated gene circuitry.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 99-115).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/124047
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.