MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Chemistry
  • Chemistry - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Chemistry
  • Chemistry - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of electronic structure and kinetics methods for the rational design of electrocatalysts

Author(s)
Ricke, Nathan Darrell Peterson.
Thumbnail
Download1142099325-MIT.pdf (11.83Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Troy Van Voorhis.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Computational modeling has untapped potential for novel material and chemical discovery. In this thesis, we explore ways to improve existing modeling methods, and how to apply these methods to design novel graphite-conjugated catalysts (GCCs). For improving electronic structure methods, we first present an extended study of bootstrap embedding theory (BET) and its ability to recover static correlation, as well as a proof on BET's ideal convergence properties. We then present a theoretical analysis using density functional theory (DFT) on a class of GCCs containing cationic nitrogen atoms, which are particularly active for catalyzing the oxygen reduction reaction (ORR). Using a mixture of high-throughput screening, statistical analysis, and computational exploration guided by chemical intuition, we design several novel GCCs, several of which DFT predicts would have enhanced activity above existing GCCs. Furthermore, our analysis reveals that known ORR scaling relations hold for GCCs, but hint at the possibility of breaking these relations with careful molecular engineering of the GCC active sites.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 79-87).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/124051
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Chemistry - Ph.D. / Sc.D.
  • Chemistry - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.