MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On foundations of public-key encryption and secret sharing

Author(s)
Degwekar, Akshay(Akshay Dhananjai)
Thumbnail
Download1142101291-MIT.pdf (12.64Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Vinod Vaikuntanathan.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Since the inception of Cryptography, Information theory and Coding theory have influenced cryptography in myriad ways including numerous information-theoretic notions of security in secret sharing, multiparty computation and statistical zero knowledge; and by providing a large toolbox used extensively in cryptography. This thesis addresses two questions in this realm: Leakage Resilience of Secret Sharing Schemes. We show that classical secret sharing schemes like Shamir secret sharing and additive secret sharing over prime order fields are leakage resilient. Leakage resilience of secret sharing schemes is closely related to locally repairable codes and our results can be viewed as impossibility results for local recovery over prime order fields. As an application of the result, we show the leakage resilience of a variant of the Goldreich-Micali-Wigderson protocol. From Laconic Statistical Zero Knowledge Proofs to Public Key Encryption. Languages with statistical zero knowledge proofs that are also average-case hard have been used to construct various cryptographic primitives. We show that hard languages with laconic SZK proofs, that is proof systems where the communication from the prover to the verifier is small, imply public key encryption.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 153-164).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/124060
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.