Show simple item record

dc.contributor.advisorMarin Soljac̆ić.en_US
dc.contributor.authorYang, Yi,Ph. D.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2020-03-09T18:53:20Z
dc.date.available2020-03-09T18:53:20Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/124096
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 141-161).en_US
dc.description.abstractScattering of electromagnetic waves is fundamentally related to the inhomogeneity of a system. This thesis focuses on several theoretical and experimental findings of electromagnetic scattering under contemporary context. These results vary from scattering off real structures and off synthetic gauge fields. The source of scattering also varies from near-field to far-field excitations. First, we present a general framework for nanoscale electromagnetism with experimental verifications based on far-field plasmonic scattering. We also theoretically propose two schemes featured by thin metallic films and hybrid plasmonic dielectric nanoresonantors, respectively, aiming at achieving high radiative efficiency in plasmonics. Second, treating free electrons as a near-field scattering excitation, we derive a universal upper limit to the spontaneous free electron radiation and energy loss, verified by measurements on the Smith-Purcell radiation. Such an upper limit allows us to identify a new regime of radiation operation where slow electrons are more efficient than fast ones. The limit also exhibits a emission probability divergence, which we show can be physically approached -by coupling free electrons to photonic bound states in the continuum. Finally, we will discuss the scattering of optical waves off synthetic magnetic fields. Specifically, we will describe a synthesis non-Abelian (non-commutative) gauge fields in real space, enabled time-reversal symmetry breaking with distinct manners. These synthetic non-Abelian gauge fields enables us to observe the non-Abelian Aharonov-Bohm effect with classical waves and classical fluxes, relevant for classical and quantum topological phenomena.en_US
dc.description.statementofresponsibilityby Yi Yang.en_US
dc.format.extent161 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleNovel electromagnetic scattering phenomenaen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1142634086en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2020-03-09T18:53:19Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record