Show simple item record

dc.contributor.advisorR. Ryan Williams and Virginia Vassilevska Williams.en_US
dc.contributor.authorAlman, Josh(Joshua H.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2020-03-09T18:58:29Z
dc.date.available2020-03-09T18:58:29Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/124111
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 209-224).en_US
dc.description.abstractWe develop linear algebraic techniques in algorithms and complexity, and apply them to a variety of different problems. We focus in particular on matrix multiplication algorithms, which have surprisingly fast running times and can hence be used to design fast algorithms in many settings, and matrix rank methods, which can be used to design algorithms or prove lower bounds by analyzing the ranks of matrices corresponding to computational tasks. First, we study the design of matrix multiplication algorithms. We define a new general method, called the Universal Method, which subsumes all the known approaches to designing these algorithms. We then design a suite of techniques for proving lower bounds on the running times which can be achieved by algorithms using many tensors and the Universal Method.en_US
dc.description.abstractOur main limitation result is that a large class of tensors generalizing the Coppersmith-Winograd tensors (the family of tensors used in all record-holding algorithms for the past 30+ years) cannot achieve a better running time for multiplying n by n matrices than O(n²[superscript .]¹⁶⁸). Second, we design faster algorithms for batch nearest neighbor search, the problem where one is given sets of data points and query points, and one wants to find the most similar data point to each query point, according to some distance measure. We give the first subquadratic time algorithm for the exact problem in high dimensions, and the fastest known algorithm for the approximate problem, for various distance measures including Hamming and Euclidean distance. Our algorithms make use of new probabilistic polynomial constructions to reduce the problem to the multiplication of low-rank matrices.en_US
dc.description.abstractThird, we study rigid matrices, which cannot be written as the sum of a low rank matrix and a sparse matrix. Finding explicit rigid matrices is an important open problem in complexity theory with applications in many different areas. We show that the Walsh-Hadamard transform, previously a leading candidate rigid matrix, is in fact not rigid. We also give the first nontrivial construction of rigid matrices in a certain parameter regime with applications to communication complexity, using an efficient algorithm with access to an NP oracle.en_US
dc.description.statementofresponsibilityby Josh Alman.en_US
dc.format.extent224 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleLinear algebraic techniques in algorithms and complexityen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1142100707en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2020-03-09T18:58:28Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record