MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New directions in streaming algorithms

Author(s)
Vakilian, Ali.
Thumbnail
Download1142633610-MIT.pdf (3.082Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Erik D. Demaine and Piotr Indyk.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Large volumes of available data have led to the emergence of new computational models for data analysis. One such model is captured by the notion of streaming algorithms: given a sequence of N items, the goal is to compute the value of a given function of the input items by a small number of passes and using a sublinear amount of space in N. Streaming algorithms have applications in many areas such as networking and large scale machine learning. Despite a huge amount of work on this area over the last two decades, there are multiple aspects of streaming algorithms that remained poorly understood, such as (a) streaming algorithms for combinatorial optimization problems and (b) incorporating modern machine learning techniques in the design of streaming algorithms. In the first part of this thesis, we will describe (essentially) optimal streaming algorithms for set cover and maximum coverage, two classic problems in combinatorial optimization. Next, in the second part, we will show how to augment classic streaming algorithms of the frequency estimation and low-rank approximation problems with machine learning oracles in order to improve their space-accuracy tradeoffs. The new algorithms combine the benefits of machine learning with the formal guarantees available through algorithm design theory.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 233-246).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/124119
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.