Show simple item record

dc.contributor.advisorDavid Gamarnik and John N. Tsitsiklis.en_US
dc.contributor.authorZubeldía Suárez, Martín.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2020-03-09T18:59:03Z
dc.date.available2020-03-09T18:59:03Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/124124
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged student-submitted from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 161-164).en_US
dc.description.abstractThis thesis addresses fundamental tradeoffs in the design of dispatching policies in large-scale distributed service systems, motivated by examples such as cloud computing facilities and multi-core processors. A canonical framework for modeling such systems is provided by a parallel queueing model with n servers, where service requests arrive stochastically over time as a single stream of jobs of rate proportional to n, and where a central controller is responsible for all decisions. The central controller makes decisions based on limited information about the state of the queues, which is conveyed through messages from servers to the dispatcher, and stored in a limited local memory. Our objective is to understand the best possible performance of such systems (in terms of stability region and delay) and to propose optimal policies, with emphasis on the asymptotic regime when both the number of servers and the arrival rate are large.en_US
dc.description.abstractWe study the tradeoffs between the resources available to the controller (memory size and message rate) and the achievable queueing delay performance and stability region of resource constrained dispatching policies. Our main findings are: 1. Queueing delay vs. resources tradeoff. We propose a family of dispatching policies, indexed by the size of their memories and by the average message rate, and show that the expected queueing delay vanishes as n --> [infinity symbol] when either (i) the number of memory bits is of the order of log(n) and the message rate grows superlinearly with n, or (ii) the number of memory bits grows superlogarithmically with n and the message rate is at least as large as the arrival rate (Chapter 3).en_US
dc.description.abstractMoreover, we develop a novel approach to show that, within a certain broad class of "symmetric" policies, every dispatching policy with a message rate of the order of n, and with a memory of the order of log(n) bits, results in an expected queueing delay which is bounded away from zero, uniformly as n --> [infinity symbol] (Chapter 4). 2. Stability region vs. resources tradeoff. We propose a dispatching policy that requires a memory size (in bits) of the order of log(n) and an arbitrarily small (but positive) message rate, and show that it is stable for all possible server rates for which the entire system is underloaded. Moreover, we show that within a certain broad class of "weakly symmetric" policies, every dispatching policy with a message rate of the order of o(n²) , and with a memory size that grows sublogarithmically with n, results in a reduced stability region (Chapter 5).en_US
dc.description.statementofresponsibilityby Martín Zubeldía Suárez.en_US
dc.format.extent164 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDelay, stability, and resource tradeoffs in large distributed service systemsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1142634812en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2020-03-09T18:59:03Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record