Show simple item record

dc.contributor.advisorChristopher Voigt.en_US
dc.contributor.authorPark, Yongjin,Ph. D.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biological Engineering.en_US
dc.date.accessioned2020-03-23T18:10:17Z
dc.date.available2020-03-23T18:10:17Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/124182
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 160-184).en_US
dc.description.abstractEngineered genetic systems in bacteria have tremendous potential for biotech applications ranging from living therapeutics to the controlled production of chemicals. Engineering such genetic systems is challenging as these genetic systems often consist of multiple genes and genetic parts (>4 genes or > 45 genetic parts) interacting with each other as intertwined networks. These intertwined networks are invisible, making the design and debugging of these genetic systems to be particularly challenging. Additionally, expressing a large number of genes creates burdens on the host cell and reduces the long-term stability of these genetic systems. Here we address these two problems by (i) adapting high-throughput RNA-seq to visualize the inner-workings of these engineered genetic systems and (ii) developing a robust and efficient genome engineering platform that enables the implementation of long-term stable engineered genetic systems on the genome.en_US
dc.description.abstractFirst, we applied a high-throughput RNA-sequencing, RNA tag-seq, to analyze the behavior of engineered genetic systems. We analyzed two systems with RNA-seq: (i) a library of 84 refactored nitrogenase clusters where each cluster consists of six genes with varying levels of expression and (ii) a genetic circuit that consists of eight interacting genes. With this analysis, we studied the design parameters for these genetic systems and identified various unexpected failure modes. Swapping a troubling genetic part in RNA-seq profile allowed us to effectively debug unwanted circuit expression profiles. To reduce the cellular burden from expressing these genetic systems, we developed a reliable and efficient genome engineering platform on the E. coli MG1655 K-12 genome. We built three genome landing pads, each of which consists of an att (phage attachment sites) site insulated with ultra-strong bidirectional terminators.en_US
dc.description.abstractLanding pads locations were determined by Tn5 transposon library screening by finding genomic locations that showed high gene expression levels without interfering endogenous gene expression. We also developed a set of plasmids that integrates genetic circuits into these landing pads via simple transformation. With these landing pads, seven orthogonal sensors and eight orthogonal TetR-homolog NOT gates were engineered on the genome to have up to 640-fold changes in output promoter activity upon induction. Utilizing these sensors and gates, we successfully implemented 3-input genome circuits that are stably maintained without antibiotics for more than two weeks in rich media with continuous daily ON/OFF state cycling. We expect this platform could facilitate the design and debugging of long-term stable engineered genetic systems.en_US
dc.description.statementofresponsibilityby Yongjin Park.en_US
dc.format.extent184 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiological Engineering.en_US
dc.titleDesign and debugging of ultrastable engineered genetic systemsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.identifier.oclc1144858701en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Biological Engineeringen_US
dspace.imported2020-03-23T18:10:16Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentBioEngen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record