Show simple item record

dc.contributor.advisorJesse H. Kroll.en_US
dc.contributor.authorRowe, James Clifford.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2020-03-23T18:11:05Z
dc.date.available2020-03-23T18:11:05Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/124192
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 51-55).en_US
dc.description.abstractPolycyclic aromatic hydrocarbons (PAHs) are a class of chemical pollutants found ubiquitously in the environment. PAHs are carcinogenic and mutagenic, and the reaction of PAHs in the atmosphere can significantly alter their health effect. The heterogeneous reaction of particle-phase benzo[a]pyrene (BaP) with atmospheric oxidants ozone (O₃) and hydroxyl radical (OH) was investigated by simulating atmospheric conditions in a laboratory environmental chamber and measuring the particle-phase species with an Aerodyne Mass Spectrometer (AMS). Kinetic parameters of each reaction were calculated and lifetimes against reaction in the atmosphere are estimated to be of 2.58 and 3.38 hours for O₃ and OH, respectively. The main reaction products revealed by the AMS for both reaction systems were BaP-dione isomers (C₂, 4-a n benzo[d,ef]chrysene-5-one (C₁₉H₁₂O₂), and BaP epoxide or diol (C₂₀H₁₂O)). These products were also observed using liquid chromatography mass spectrometry (LCMS), validating the AMS as an effective, on-line method for product identification of PAH reaction products. Elemental analysis by the AMS revealed a higher oxygen to carbon ratio in the products of reaction with OH versus O₃, suggesting OH has higher reactivity with primary reaction products (PRPs) and forms secondary reaction products (SRPs) with higher oxygen content. The calculated kinetic parameters in this study may be of use for atmospheric modelling and the products identified in this study are targets for health studies of BaP reaction products. Additional studies are needed to determine the effect of particle properties on the heterogeneous reaction rate and the identity of SRPs.en_US
dc.description.statementofresponsibilityby James Clifford Rowe.en_US
dc.format.extent57 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleLaboratory study of the atmospheric heterogeneous oxidation of benzo[a]pyreneen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.identifier.oclc1144932431en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Civil and Environmental Engineeringen_US
dspace.imported2020-03-23T18:11:04Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentCivEngen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record