MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling progression of Parkinson's disease

Author(s)
Ji, Christina X.(Christina Xinyue)
Thumbnail
Download1145122269-MIT.pdf (26.62Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
David A. Sontag.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Chronic diseases progress slowly over years and impose a significant burden on patients. To help alleviate this burden, we propose tackling three clinical questions: predicting progression events, summarizing patient state, and identifying prognosis-driven subtypes. These questions are challenging because progression is highly heterogenous across patients. In this thesis, we address these challenges for Parkinson's disease (PD), the second-most common neurodegenerative disorder, using various machine learning approaches. First, we process data from the Parkinson's Progression Markers Initiative to convert it into a format that is easier to use for downstream machine learning analyses. Utilizing this data, we design novel data-driven outcomes that capture impairment in motor, cognitive, autonomic, psychiatric, and sleep symptoms and allow for heterogeneity in the patient population. Then, we build survival analysis models to predict these outcomes from baseline. Using our motor and hybrid outcomes can reduce the sample sizes and enrollment time for early PD clinical trials. We can provide further reductions by identifying more severe patients for enrollment via survival analysis and binary classification methods. For summarizing patient state, we seek better representations of disease burden by learning trajectories of disease progression. Lastly, we consider ways to use these patient representations and outcomes for discovering subtypes that capture differing rates of progression. We hope this thesis starts to answer the three clinical questions for PD and sparks more machine learning research in this area.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 189-197).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/124250
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.