MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fine-tuning generative models

Author(s)
Khandelwal, Arjun(Arjun Sunil)
Thumbnail
Download1145123030-MIT.pdf (1014.Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
David Sontag.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Deep generative models have emerged as a powerful modeling paradigm for making sense of large amounts of unlabeled real-world data. In particular, the representations produced by these models have proven to be useful both in improving human understanding of the factors of variation in the original dataset and in downstream tasks such as classification. Most current algorithms, however, require training a bespoke model from scratch, which can be both expensive and time-consuming. Instead, we propose various methods of fine-tuning pre-trained generative models to achieve these goals, and evaluate these methods quantitatively on few-shot classification and interpretability tasks.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 73-76).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/124252
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.