MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Causal structure discovery from incomplete data

Author(s)
Squires, Chandler(Chandler B.)
Thumbnail
Download1145169413-MIT.pdf (1.360Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Caroline Uhler.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Causal structure learning is a fundamental tool for building a scientific understanding of the way a system works. However, in many application areas, such as genomics, the information necessary for current causal structure learning algorithms does not match the information that researchers can actually access, for example when the algorithm requires knowledge of intervention targets but the interventions have off-target effects. In this thesis, we developed, implemented, and tested a novel algorithm for discovering a causal DAG from observational and interventional data, when the intervention targets are either partially or completely unknown. We relate the algorithm to the recently introduced Joint Causal Inference framework. Finally, we evaluate the performance of the algorithm on synthetic datasets and demonstrated its ability to outperform current state-of-the-art causal structure learning algorithms which assume known intervention targets.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 43-44).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/124263
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.