MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dissecting the gene-regulatory circuitry of disease-associated genetic variants

Author(s)
Herr, Taylor(Taylor J.)
Thumbnail
Download1149038812-MIT.pdf (10.08Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Manolis Kellis.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Disease-associated nucleotides lie primarily in non-coding regions, increasing the urgency of understanding how gene-regulatory circuitry impacts human disease. Here, we use the increasing availability of functional genomics datasets and models elucidating how regulatory proteins control genes, to evaluate the impact of genetic variants on the activity of diverse regulators. First, we generate a comprehensive compendium of predicted binding intensities across the entire genome for over 500 transcription factors. Second, we create a novel dataset to connect how these binding intensities change in the context of disease datasets. Third, we develop a statistical framework to integrate these two datasets using dimensionality reduction, latent cluster discovery, and topic modeling. We use these techniques to show that regulatory proteins with analogous biological functions share similar global changes in binding due to genome-wide genetic variation. We also use our framework to discover a latent set of topics behind all genomic locations in chromosome 1, to link the locations in each of the topic clusters with a class of related diseases, and to show that relevant biological processes are statistically enriched in the genomic locations most related to each cluster.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis. "June 2019."
 
Includes bibliographical references (pages 89-91).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/124573
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.