MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A reinforcement learning algorithm for efficient dynamic trading execution in the presence of signals

Author(s)
Elkind, Daniel(Daniel Harris)
Thumbnail
Download1149013871-MIT.pdf (2.462Mb)
Other Contributors
Sloan School of Management.
Advisor
Adrien Verdelhan
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This paper focuses the optimal trading execution problem, where a trader seeks to maximize the proceeds from trading a given quantity of shares of a financial asset over a fixed-duration trading period, considering that trading impacts the future trajectory of prices. I propose a reinforcement learning (RL) algorithm to solve this maximization problem. I prove that the algorithm converges to the optimal solution in a large class of settings and point out a useful duality between the learning contraction and the dynamic programming PDE. Using simulations calibrated to historical exchange trading data, I show that (i) the algorithm reproduces the analytical solution for the case of random walk prices with a linear absolute price impact function and (ii) matches the output of classical dynamic programming methods for the case of geometric brownian motion prices with linear relative price impact. In the most relevant case, when a signal containing information about prices is introduced to the environment, traditional computational methods become intractable. My algorithm still finds the optimal execution policy, leading to a statistically and economically meaningful reduction in trading costs.
Description
Thesis: S.M. in Management Research, Massachusetts Institute of Technology, Sloan School of Management, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 27-29).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/124585
Department
Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.