dc.contributor.author | Sah, Ashwin | |
dc.contributor.author | Sawhney, Mehtaab | |
dc.date.accessioned | 2020-04-24T17:51:14Z | |
dc.date.available | 2020-04-24T17:51:14Z | |
dc.date.issued | 2019-07-12 | |
dc.identifier.issn | 0305-0041 | |
dc.identifier.issn | 1469-8064 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/124864 | |
dc.description.abstract | May the triforce be the 3-uniform hypergraph on six vertices with edges {123′, 12′3, 1′23}. We show that the minimum triforce density in a 3-uniform hypergraph of edge density δ is δ 4−o(1) but not O(δ 4 ). Let M(δ) be the maximum number such that the following holds: for every ǫ > 0 and G = F n 2 with n sufficiently large, if A ⊆ G × G with A ≥ δ|G| 2 , then there exists a nonzero “popular difference” d ∈ G such that the number of “corners” (x, y),(x + d, y),(x, y + d) ∈ A is at least (M(δ) − ǫ)|G| 2 . As a corollary via a recent result of Mandache, we conclude that M(δ) = δ 4−o(1) and M(δ) = ω(δ 4 ). On the other hand, for 0 < δ < 1/2 and sufficiently large N, there exists A ⊆ [N] 3 with |A| ≥ δN3 such that for every d 6= 0, the number of corners (x, y, z),(x + d, y, z),(x, y + d, z),(x, y, z + d) ∈ A is at most δ c log(1/δ)N 3 . A similar bound holds in higher dimensions, or for any configuration with at least 5 points or affine dimension at least 3. ©2019 | en_US |
dc.publisher | Cambridge University Press (CUP) | en_US |
dc.relation.isversionof | 10.1017/s0305004119000173 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.subject | General Mathematics | en_US |
dc.title | Triforce and corners | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Fox, Jacob, Ashwin Sah, Mehtaab Sawhney, David Stoner, and Yufei Zhao, "Triforce and corners." Mathematical proceedings of the Cambridge Philosophical Society 2019 (July 2019): p. 1-15 doi 10.1017/s0305004119000173 ©2019 Author(s) | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.relation.journal | Mathematical proceedings of the Cambridge Philosophical Society | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Jacob Fox; Ashwin Sah; Mehtaab Sawhney; David Stoner; Yufei Zhao | en_US |
dspace.date.submission | 2019-11-24T15:03:54Z | |
mit.journal.volume | 2019 | en_US |
mit.license | OPEN_ACCESS_POLICY | |