Show simple item record

dc.contributor.authorGorin, Vadim
dc.contributor.authorSodin, Sasha
dc.date.accessioned2020-04-28T18:31:41Z
dc.date.available2020-04-28T18:31:41Z
dc.date.issued2018-09
dc.date.submitted2018-01
dc.identifier.issn1817-5805
dc.identifier.issn1812-9471
dc.identifier.urihttps://hdl.handle.net/1721.1/124902
dc.description.abstractThe logarithm of the diagonal matrix element of a high power of a random matrix converges to the Cole–Hopf solution of the Kardar–Parisi–Zhang equation in the sense of one-point distributions. Key words: KPZ equation; Cole–Hopf solution; Airy process; random matrices.en_US
dc.language.isoen
dc.publisherCo. Ltd. Ukrinformnaukaen_US
dc.relation.isversionofhttp://dx.doi.org/10.15407/MAG14.03.286en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleThe KPZ Equation and Moments of Random Matricesen_US
dc.typeArticleen_US
dc.identifier.citationGorin, Vadim and Sasha Sodin. “The KPZ Equation and Moments of Random Matrices.” Journal of Mathematical Physics, Analysis, Geometry 14, 3 (September 2018): 286–96.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalJournal of Mathematical Physics, Analysis, Geometryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-11-13T15:31:57Z
dspace.date.submission2019-11-13T15:32:01Z
mit.journal.volume14en_US
mit.journal.issue3en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record