Show simple item record

dc.contributor.authorSilva, Sam James
dc.contributor.authorHeald, Colette L.
dc.contributor.authorRavela, Sai
dc.contributor.authorMammarella, I.
dc.contributor.authorMunger, J. W.
dc.date.accessioned2020-05-27T19:02:10Z
dc.date.available2020-05-27T19:02:10Z
dc.date.issued2019-01
dc.date.submitted2018-10
dc.identifier.issn1944-8007
dc.identifier.issn0094-8276
dc.identifier.urihttps://hdl.handle.net/1721.1/125517
dc.description.abstractThe loss of ozone to terrestrial and aquatic systems, known as dry deposition, is a highly uncertain process governed by turbulent transport, interfacial chemistry, and plant physiology. We demonstrate the value of using Deep Neural Networks (DNN) in predicting ozone dry deposition velocities. We find that a feedforward DNN trained on observations from a coniferous forest site (Hyytiälä, Finland) can predict hourly ozone dry deposition velocities at a mixed forest site (Harvard Forest, Massachusetts) more accurately than modern theoretical models, with a reduction in the normalized mean bias (0.05 versus ~0.1). The same DNN model, when driven by assimilated meteorology at 2° × 2.5° spatial resolution, outperforms the Wesely scheme as implemented in the GEOS-Chem model. With more available training data from other climate and ecological zones, this methodology could yield a generalizable DNN suitable for global models.en_US
dc.description.sponsorshipNSF (grant 1564495)en_US
dc.description.sponsorshipU.S. DOE Office of Science (contract DE-AC02-05CH11231)en_US
dc.description.sponsorshipNSF (DEB-1237491)en_US
dc.language.isoen
dc.publisherAmerican Geophysical Union (AGU)en_US
dc.relation.isversionof10.1029/2018GL081049en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleA Deep Learning Parameterization for Ozone Dry Deposition Velocitiesen_US
dc.typeArticleen_US
dc.identifier.citationSilva, S. J., Heald, C. L., Ravela, S., Mammarella, I., & Munger, J. W. (2019). A deep learning parameterization for ozone dry deposition velocities. Geophysical Research Letters, 46, 983–989. https://doi.org/10.1029/2018GL081049en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.relation.journalGeophysical Research Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-05-27T17:37:29Z
dspace.date.submission2020-05-27T17:37:31Z
mit.journal.volume46en_US
mit.journal.issue2en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record