MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modular Assembly of Polysaccharide-Degrading Marine Microbial Communities

Author(s)
Enke, Tim N.; Datta, Manoshi Sen; Schwartzman, Julia A.; Cermak, Nathan; Cordero Sanchez, Otto X.
Thumbnail
DownloadPublished version (2.131Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Understanding the principles that govern the assembly of microbial communities across earth's biomes is a major challenge in modern microbial ecology. This pursuit is complicated by the difficulties of mapping functional roles and interactions onto communities with immense taxonomic diversity and of identifying the scale at which microbes interact [1]. To address this challenge, here, we focused on the bacterial communities that colonize and degrade particulate organic matter in the ocean [2–4]. We show that the assembly of these communities can be simplified as a linear combination of functional modules. Using synthetic polysaccharide particles immersed in natural bacterioplankton assemblages [1, 5], we showed that successional particle colonization dynamics are driven by the interaction of two types of modules: a first type made of narrowly specialized primary degraders, whose dynamics are controlled by particle polysaccharide composition, and a second type containing substrate-independent taxa whose dynamics are controlled by interspecific interactions—in particular, cross-feeding via organic acids, amino acids, and other metabolic byproducts. We show that, as a consequence of this trophic structure, communities can assemble modularly—i.e., by a simple sum of substrate-specific primary degrader modules, one for each complex polysaccharide in the particle, connected to a single broad-niche range consumer module. Consistent with this model, a linear combination of the communities on single-polysaccharide particles accurately predicts community composition on mixed-polysaccharide particles. Our results suggest that the assembly of heterotrophic communities that degrade complex organic materials follows simple design principles that could be exploited to engineer heterotrophic microbiomes. Enke et al. show that particle-attached marine microbial communities assemble by recruiting functional groups of taxa in an additive manner. Specialist groups degrade specific polysaccharides, whereas generalist byproduct utilizers invade independently of particle substrate. This simple organization allows prediction of community structure.
Date issued
2019-05
URI
https://hdl.handle.net/1721.1/125682
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Computational and Systems Biology Program; Picower Institute for Learning and Memory
Journal
Current Biology
Publisher
Elsevier BV
Citation
Enke, Tim N. et al. “Modular Assembly of Polysaccharide-Degrading Marine Microbial Communities” Current Biology, vol. 29, no. 9, 2019, pp. 1528-1535.e6 © 2019 The Author(s)
Version: Final published version
ISSN
0960-9822

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.