MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spherically symmetric random permutations

Author(s)
Gnedin, Alexander; Gorin, Vadim
Thumbnail
DownloadSubmitted version (225.3Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation-valued processes are identified for the Hamming, Kendall-tau and Cayley metrics. The proofs in all three cases are based on a unified approach through stochastic monotonicity.
Date issued
2019-03
URI
https://hdl.handle.net/1721.1/125938
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Random Structures & Algorithms
Publisher
Wiley
Citation
Gnedin, Alexander; Gorin, Vadim. "Spherically Symmetric Random Permutations." Random Structures & Algorithms 55,2 (2019): 342– 355. https://doi.org/10.1002/rsa.20847
Version: Original manuscript
ISSN
1098-2418
1042-9832

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.