Antigen-specific antibody Fc glycosylation enhances humoral immunity via the recruitment of complement
Author(s)
Lofano, Giuseppe; Gorman, Matthew J.; Yousif, Ashraf S.; Yu, Wen-Han; Fox, Julie M.; Dugast, Anne-Sophie; Ackerman, Margaret E.; Suscovich, Todd J.; Weiner, Joshua; Barouch, Dan; Streeck, Hendrik; Little, Susan; Smith, Davey; Richman, Douglas; Lauffenburger, Douglas A; Walker, Bruce; Diamond, Michael S.; Alter, Galit; ... Show more Show less
DownloadPublished version (614.9Kb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
HIV-specific broadly neutralizing antibodies (bNAbs) confer protection after passive immunization, but the immunological mechanisms that drive their development are poorly understood. Structural features of bNAbs indicate that they originate from extensive germinal center (GC) selection, which relies on persistent GC activity. However, why a fraction of infected individuals are able to successfully drive more effective affinity maturation is unclear. Delivery of antigens in the form of antibody-immune complexes (ICs), which bind to complement receptors (CRs) or Fc receptors (FcRs) on follicular dendritic cells, represents an effective mechanism for antigen delivery to the GC. We sought to define whether IC-FcR or CR interactions differ among individuals who develop bNAb responses to HIV. Enhanced Fc effector functions and FcR/CR interactions, via altered Fc glycosylation profiles, were observed among individuals with neutralizing antibody responses to HIV compared with those without neutralizing antibody activity. Moreover, both polyclonal neutralizer ICs and monoclonal IC mimics of neutralizer antibodies induced higher antibody titers, higher-avidity antibodies, and expanded GC B cell reactions after immunization of mice via accelerated antigen deposition within B cell follicles in a complement-dependent manner. Thus, these data point to a direct role for altered Fc profile/complement interactions in shaping the maturation of the humoral immune response, providing insights into how GC activity may be enhanced to drive affinity maturation in next-generation vaccine approaches.
Date issued
2018-08Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Institute for Medical Engineering & ScienceJournal
Science Immunology
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Lofano, Giuseppe et al. "Antigen-specific antibody Fc glycosylation enhances humoral immunity via the recruitment of complement." Science Immunology 3, 26 (August 2018): eaat7796 © 2018 The Authors
Version: Final published version
ISSN
2470-9468