MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Novel Small Molecule Activator of Nuclear Receptor SHP Inhibits HCC Cell Migration via Suppressing Ccl2

Author(s)
Yang, Zhihong; Koehler, Angela Nicole; Wang, Li
Thumbnail
DownloadAccepted version (1.521Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Small heterodimer partner (SHP, NR0B2) is a nuclear orphan receptor without endogenous ligands. Due to its crucial inhibitory role in liver cancer, it is of importance to identify small molecule agonists of SHP. As such, we initiated a probe discovery effort to identify compounds capable of modulating SHP function. First, we performed binding assays using small molecule microarrays (SMM) and discovered 5-(diethylsulfamoyl)-3-hydroxynaphthalene-2-carboxylic acid (DSHN) as a novel activator of SHP. DSHN transcriptionally activated Shp mRNA, but also stabilized the SHP protein by preventing its ubiquitination and degradation. Second, we identified Ccl2 as a new SHP target gene by RNA-seq. We showed that activation of SHP by DSHN repressed Ccl2 expression and secretion by inhibiting p65 activation of CCL2 promoter activity, as demonstrated in vivo in Shp-/- mice and in vitro in HCC cells with SHP overexpression and knockdown. Third, we elucidated a strong inhibitory effect of SHP and DSHN on HCC cell migration and invasion by antagonizing the effect of CCL2. Lastly, by interrogating a publicly available database to retrieve SHP expression profiles from multiple types of human cancers, we established a negative association of SHP expression with human cancer metastasis and patient survival. In summary, the discovery of a novel small molecule activator of SHP provides a therapeutic perspective for future translational and preclinical studies to inhibit HCC metastasis by blocking Ccl2 signaling.
Date issued
2016-08
URI
https://hdl.handle.net/1721.1/126105
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Koch Institute for Integrative Cancer Research at MIT
Journal
Molecular Cancer Therapeutics
Publisher
American Association for Cancer Research (AACR)
Citation
Yang, Zhihong, Angela N. Koehler, and Li Wang. "A Novel Small Molecule Activator of Nuclear Receptor SHP Inhibits HCC Cell Migration via Suppressing Ccl2." Molecular Cancer Therapeutics, 15, 10 (October 2016): 2294-301.
Version: Author's final manuscript
ISSN
1535-7163
1538-8514

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.