Show simple item record

dc.contributor.authorTinguely, Roy Alexander
dc.contributor.authorTurner, Andrew Patrick
dc.date.accessioned2020-08-13T20:01:04Z
dc.date.available2020-08-13T20:01:04Z
dc.date.issued2020-07
dc.date.submitted2019-12
dc.identifier.issn2399-3650
dc.identifier.urihttps://hdl.handle.net/1721.1/126571
dc.description.abstractOptical analogues to black holes allow the investigation of general relativity in a laboratory setting. Previous works have considered analogues to Schwarzschild black holes in an isotropic coordinate system; the major drawback is that required material properties diverge at the horizon. We present the dielectric permittivity and permeability tensors that exactly reproduce the equatorial Kerr–Newman metric, as well as the gradient-index material that reproduces equatorial Kerr–Newman null geodesics. Importantly, the radial profile of the scalar refractive index is finite along all trajectories except at the point of rotation reversal for counter-rotating geodesics. Construction of these analogues is feasible with available ordinary materials. A finite-difference frequency-domain solver of Maxwell’s equations is used to simulate light trajectories around a variety of Kerr–Newman black holes. For reasonably sized experimental systems, ray tracing confirms that null geodesics can be well-approximated in the lab, even when allowing for imperfect construction and experimental error.en_US
dc.description.sponsorshipDOE (Grant DE-SC00012567)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s42005-020-0384-5en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleOptical analogues to the equatorial Kerr–Newman black holeen_US
dc.typeArticleen_US
dc.identifier.citationTinguely, Roy Alexander et al. "Optical analogues to the equatorial Kerr–Newman black hole." Communications Physics 3, 1 (July 2020): 120 © 2020 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.relation.journalCommunications Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-08-10T12:04:49Z
dspace.date.submission2020-08-10T12:04:52Z
mit.journal.volume3en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record