MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

End-to-end differentiable physics for learning and control

Author(s)
Smith, Kevin A; Allen, Kelsey Rebecca; Tenenbaum, Joshua B
Thumbnail
DownloadPublished version (794.1Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2018 Curran Associates Inc.All rights reserved. We present a differentiable physics engine that can be integrated as a module in deep neural networks for end-to-end learning. As a result, structured physics knowledge can be embedded into larger systems, allowing them, for example, to match observations by performing precise simulations, while achieves high sample efficiency. Specifically, in this paper we demonstrate how to perform backpropagation analytically through a physical simulator defined via a linear complementarity problem. Unlike traditional finite difference methods, such gradients can be computed analytically, which allows for greater flexibility of the engine. Through experiments in diverse domains, we highlight the system's ability to learn physical parameters from data, efficiently match and simulate observed visual behavior, and readily enable control via gradient-based planning methods. Code for the engine and experiments is included with the paper.
Date issued
2018-12
URI
https://hdl.handle.net/1721.1/126615
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
32nd Conference on Neural Information Processing Systems (NeurIPS 2018)
Publisher
Curran Associates Inc
Citation
Belbute-Peres, Filipe de A. et al. “End-to-end differentiable physics for learning and control.” Paper presented at the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Dec 3-8 2018, Curran Associates Inc © 2018 The Author(s)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.