Show simple item record

dc.contributor.advisorArnold I. Barnett and Brian Anthony.en_US
dc.contributor.authorChiu, Brendon W.en_US
dc.contributor.otherSloan School of Management.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2020-09-03T16:43:35Z
dc.date.available2020-09-03T16:43:35Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/126950
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, May, 2020en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 107-108).en_US
dc.description.abstractMany aerospace companies are turning to additive manufacturing solutions to stream-line current production processes and open opportunities for on-demand producibility. While many OEMs are drawn to the appeal of the benefits that additive manufacturing brings, they are beginning to understand the difficulties in what it takes to realize those benefits. This paper analyzes additive manufacturing from an industry perspective down to a company perspective to develop a deeper understanding of the practical use cases as well as the various challenges a company faces should they choose to enter this market. This study begins with market research on the additive manufacturing and aerospace industry before honing in on a several use-case parts from rotary aircraft. Selection criterion were created and applied to analyze the value that additive manufacturing would bring in comparison to that of conventional methods, ultimately determining its feasibility for additive manufacturing.en_US
dc.description.abstractThis study applied the selection criterion to various parts of differing functions among the aircraft, resulting in a group of candidate parts. An evaluation method was created and applied to provide an objective assessment on the candidate parts. Initial insights show that additive manufacturing favor casted parts with features that can be optimized to increase performance and reduce costs and weight. In addition, aerospace has the best product mix of low volume parts that are advantageous to the economies of scale for additive manufacturing. Additionally, this study analyzes a company's organization and previous additive manufacturing efforts to propose ways to approach future development. Venturing through the various road maps that lead to the final goal of certification and addressing organizational barriers generate momentum for continuous development.en_US
dc.description.abstractThese road maps, selection criterion, and evaluation method can be applied through many applications within the general aerospace industry.en_US
dc.description.statementofresponsibilityby Brendon W Chiu.en_US
dc.format.extent108 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.titleAdditive manufacturing applications and implementation in aerospaceen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc1191622655en_US
dc.description.collectionM.B.A. Massachusetts Institute of Technology, Sloan School of Managementen_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2020-09-03T16:43:32Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentSloanen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record