Show simple item record

dc.contributor.advisorNicholas Fang and John F. Carrier.en_US
dc.contributor.authorChu, Jeffrey B.(Jeffrey Bowen)en_US
dc.contributor.otherSloan School of Management.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2020-09-03T16:44:40Z
dc.date.available2020-09-03T16:44:40Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/126954
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, in conjunction with the Leaders for Global Operations Program at MIT, May, 2020en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 65-67).en_US
dc.description.abstractThe use of wire-arc additive manufacturing (WAAM) as fabrication method for Iron-Nickel 36 (Invar36) alloy aerospace tooling is a growing area of interest for many tooling companies and composite aircraft manufacturers. However, the full adoption and utilization of WAAM techniques is hindered due to lack of industry experience and end-part quality precedent. For some tool makers, the feasibility of utilizing additively manufactured Invar components is still under investigation because key material characteristics of end-parts are not well understood. Further, the impact of implementing additive manufacturing on a manufacturer's internal operations is not widely documented. While much academic research has been conducted on WAAM technologies, Invar, and change management for new technology introductions, much of the available literature does not provide the specificity needed to supplant an aerospace toolmakers' need for hands-on experience. This research will investigate both the technical feasibility of using WAAM Invar components (with respect to end-part quality and performance) in aerospace tool fabrication, as well as the organizational feasibility and impact of adopting the technology. This thesis will describe the series of testing completed to evaluate WAAM Invar in the context of an aerospace toolmaker and will outline some of the key organizational impacts that must be acknowledged for adoption of additive manufacturing within an aerospace tool making company. Because of this research, we hope to demonstrate the viability of utilizing WAAM Invar for aerospace tooling applications.en_US
dc.description.statementofresponsibilityby Jeffrey B. Chu.en_US
dc.format.extent67 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleInvestigating the feasibility and impact of integrating wire-arc additive manufacturing in aerospace tooling applicationsen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentLeaders for Global Operations Programen_US
dc.identifier.oclc1191622757en_US
dc.description.collectionM.B.A. Massachusetts Institute of Technology, Sloan School of Managementen_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2020-09-03T16:44:35Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentSloanen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record