Show simple item record

dc.contributor.advisorAnantha P. Chandrakasan.en_US
dc.contributor.authorGarcha, Preetinder(Preetinder Kaur)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2020-09-03T17:42:16Z
dc.date.available2020-09-03T17:42:16Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127019
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 145-151).en_US
dc.description.abstractThe continued expansion of Internet of Things has led to a proliferation of wireless sensors and systems across the globe. The application space for sensors is wide-ranging: from industries, to serve the upcoming era of Industry 4.0, to consumer products, like body wearable sensors. The rise to billions of sensors relies on two key trends in sensor systems: miniaturization and energy-efficiency. This work explores the use of integrated magnetics in microelectronics to enable low power, energy-efficient sensing, as well as energy harvesting to power the sensors, in a compact form factor. For industrial applications, we present the design of a bandwidth-scalable, integrated fluxgate magnetic-to-digital converter for energy-efficient contactless current sensing in smart connectors. The system uses mixed signal front-end design to en-able duty cycling and quick convergence techniques leading to 20x reduction in power consumption at low bandwidths of 1 kHz for power monitoring. It also employs fast read-out circuits to achieve a bandwidth of 125 kHz for machine health diagnosis. For personal body wearable electronics and beyond, we present the design of a cold start system with integrated magnetics for ultra low voltage startup in thermal energy harvesting applications. The Meissner Oscillator analysis with on-chip magnetics allows co-optimization of magnetics and circuits to achieve start up from as low as 25 mV input voltage to the circuits, despite 1000x lower inductance than off-chip transformers. Given the recent push towards artificial intelligence and a growing need for data, along with sensors to collect that data, we need to explore novel uses of technologies to meet the demands for small form factor and low power operation, as the number of sensors scale. The ideas presented in this thesis, with two very different applications of the integrated magnetics technology, can contribute to the continued growth towards trillions of sensors.en_US
dc.description.statementofresponsibilityby Preetinder Garcha.en_US
dc.format.extent151 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleLow power circuits with integrated magnetics for sensors and energy harvesting systemsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1191624846en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2020-09-03T17:42:16Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record