MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Aeronautics and Astronautics
  • Aeronautics and Astronautics - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Aeronautics and Astronautics
  • Aeronautics and Astronautics - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low-thrust Spacecraft guidance and control using proximal policy optimization

Author(s)
Miller, Daniel(Daniel Martin)
Thumbnail
Download1191819251-MIT.pdf (1.489Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Richard Linares.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Artificial intelligence is a rapidly developing field that promises to revolutionize spaceflight with greater robotic autonomy and innovative decision making. However, it remains to be determined which applications are best addressed using this new technology. In the coming decades, future spacecraft will be required to possess autonomous guidance and control in the complex, nonlinear dynamical regimes of cis-lunar space. In the realm of trajectory design, current methods struggle with local minima, and searching large solutions spaces. This thesis investigates the use of the Reinforcement Learning (RL) algorithm Proximal Policy Optimization (PPO) for solving low-thrust spacecraft guidance and control problems. First, an agent is trained to complete a 302 day mass-optimal low-thrust transfer between the Earth and Mars. This is accomplished while only providing the agent with information regarding its own state and that of Mars. By comparing these results to those generated by the Evolutionary Mission Trajectory Generator (EMTG), the optimality of the trajectory designed using PPO is assessed. Next, an agent is trained as an onboard regulator capable of correcting state errors and following pre-calculated transfers between libration point orbits. The feasibility of this method is examined by evaluating the agent's ability to correct varying levels of initial state error via Monte Carlo testing. The generalizability of the agent's control solution is appraised on three similar transfers of increasing difficulty not seen during the training process. The results show both the promise of the proposed PPO methodology and its limitations, which are discussed.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 101-107).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127071
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Aeronautics and Astronautics - Master's degree
  • Aeronautics and Astronautics - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.