Show simple item record

dc.contributor.advisorDavid W. Miller.en_US
dc.contributor.authorCabrales Hernandez, Alejandro D.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2020-09-03T17:45:34Z
dc.date.available2020-09-03T17:45:34Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127072
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 153-157).en_US
dc.description.abstractThe capability to rendezvous and dock with tumbling objects has become prominent with increased interest in active debris removal, satellite servicing, and in-space assembly. Guidance and control algorithms have been developed in the literature to allow for a spacecraft to capture an uncooperative and tumbling object under several constraints such as collision avoidance, speed bounds, and thruster saturation. However, current algorithms for this capability do not address plume impingement due to thrusters, which can lead to damage to the target object, and can require the use of nonlinear solvers that neither guarantee convergence of a solution nor be deployed in real-time using current computational capabilities of spacecraft. This thesis presents a quasi-analytical guidance algorithm that allows for a spacecraft to soft-dock with a target, avoids plume impingement, and allows for real-time generation of trajectories with low computational expense. Several test cases compare the solution from this algorithm against a solution using pseudospectral methods and show similar performance at less than 0.1% computational cost, and an example scenario for docking with the the European Space Agency's ENVISAT is presented. Additionally, a discrete transport trajectory optimizer is presented for use as a first cut solution to transporting several components to the same halo orbit for in-space assembly.en_US
dc.description.statementofresponsibilityby Alejandro D. Cabrales Hernandez.en_US
dc.format.extent157 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleReal-time quasi-analytical trajectory generation for docking with tumbling objectsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.identifier.oclc1191819275en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronauticsen_US
dspace.imported2020-09-03T17:45:33Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentAeroen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record