MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Object tracking in mmWave radar networks

Author(s)
Miller, Samuel(Samuel John)
Thumbnail
Download1191823989-MIT.pdf (1.643Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Moe Z. Win.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Location-aware devices enable new services such as localization and tracking of objects within existing wireless communication networks like cellular mobile, Wi-Fi, and radio. To ensure these services are also available in the evolving millimeter wave (mmWave) communication infrastructure, it is important to develop algorithms that enable mmWave devices, like radars and 5G nodes, to localize and track objects. The main challenges that these algorithms must address is localizing objects that are not carrying sensing equipment, synchronizing devices exclusively via the mmWave band, and solving a data association uncertainty problem to reliably track objects of interest. Our development of the Multistatic Networking with mmWave Radar Arrays for Positioning (MiNiMAP) system solved these challenges by implementing mmWave processing in a multistatic network, scheduling, and radar synchronization algorithms. Through the use of these three algorithms in addition to Bayesian filtering, MiNiMAP is capable of tracking a single object with a network of mmWave radars. Indoor localization experiments validate MiNiMAP's overall system performance and the impact of each algorithm.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 71-87).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127079
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.