MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Supersymmetry, supergravity, and String Theory based inflationary cosmology

Author(s)
Kraj, Megan C.
Thumbnail
Download1191824257-MIT.pdf (10.00Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
David I. Kaiser.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The aim of this thesis is to investigate and present an overview of inflationary theory. As part of this effort, the main motivations for cosmic inflation, which are known as problems in the standard big bang scenario, are reviewed. These problems are the "flatness problem", "horizon problem", and the "monopole problem." Analysis of inflation caused by a single scalar field rolling on a scalar potential is considered. This enables the introduction of the "slow-roll parameters" and their application. Since supersymmetry is considered a candidate beyond the standard model theory, we explore the connection between supersymmetry and the early universe. In order to incorporate gravity at energy scales of the early universe, supergravity is examined as well. Having considered inflation in the context of supersymmetry and supergravity, it is therefore natural to present the role of string theory in inflationary model building. As a result, axion monodromy is considered. Representative models are compared to analysis of precision measurements of the cosmic microwave background radiation. This comparison is achieved using observable derived constraints of the spectral index and tensor to scalar ratio.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 150-151).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127088
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.