MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Physics
  • Physics - Bachelor's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Physics
  • Physics - Bachelor's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probing electron-electron and electron-phonon interactions in twisted bilayer graphene

Author(s)
Phinney, Isabelle Y.
Thumbnail
Download1191824339-MIT.pdf (41.94Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Pablo Jarillo-Herrero.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Two-dimensional systems, and, most recently, moire systems, have risen to the forefront of condensed matter physics with the advent of experimental techniques that allow for controlled stacking of van der Waals heterostructures [17, 54]. For example, it was recently discovered that when two pieces of atomically thin carbon (graphene) are twisted at 1.1° with respect to one another, they display a variety of effects, including superconducting behavior [10]. Experimental investigation of the behavior of small-angle twisted bilayer graphene (SA-TBG) as a function of twist angle is imperative to understanding the mechanisms that play into the many interesting, strongly-interacting phenomena that the moire system displays. In this thesis, I present three experiments which explore electron-electron and electron-phonon interactions in SA-TBG. I first consider SA-TBG as a host for a viscous electron fluid and look for the onset of fluid behavior via electron transport. Then I investigate the temperature dependence of resistivity in SA-TBG devices at a number of angles. The final experiment examines magnetophonons in three devices above the magic angle and compares the findings to theoretical results.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 81-86).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127092
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Physics - Bachelor's degree
  • Physics - Bachelor's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.