Show simple item record

dc.contributor.advisorBrian L. Wardle.en_US
dc.contributor.authorVanderhout, Amy Ruth.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2020-09-03T17:46:44Z
dc.date.available2020-09-03T17:46:44Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127095
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 203-224).en_US
dc.description.abstractCarbon nanotube (CNT) assemblies are seeing increasing use in engineering applications due to their advantaged, mass-specific physical properties. The high strength-to-weight ratio, electrical and thermal conductivity, and elastic properties make CNTs ideal for many aerospace, automotive, and electrical applications. In structural materials, CNTs are an outstanding candidate to provide nano-reinforcement, both in hybrid composites and nanocomposites, and they have been found to improve the hardness, yield strength, and conductivity of their matrix material. Additional enhancement of these matrices can be realized by using aligned CNTs (A-CNTs) of increased volume fraction, as explored in this work.en_US
dc.description.abstractIn this thesis, ceramic matrix nanocomposites (CMNCs), specifically A-CNT/carbon matrix nanocomposites (A/C-NCs), are synthesized by first infusing a carbon precursor resin into A-CNT arrays with CNT volume fractions (v[subscript f]) ranging from 1-30 vol%, and then pyrolyzing the resin to create a carbon matrix around the A-CNTs. Previous work with A/C-NC hardness suggests that such a lightweight, superhard material may rival the density-normalized hardness of diamond at high v[subscript f]. Various processes were refined and tested in this work, yielding microscale void-free A/CNCs up to 30% v[subscript f], with an ~7% improvement in hardness over baseline pyrolytic carbon (PyC) for 1% v[subscript f] A/C-NCs and <10% improvement in hardness for 5% v[subscript f] A-CNTs. A reinfusion (i.e. an initial infusion/pyrolysis cycle with three additional reinfusion/pyrolysis cycles) procedure was developed and implemented, and testing is recommended as immediate future work.en_US
dc.description.abstractAlthough hardness determination of these reinfused samples is left for future work, the X-ray CT images of the final A/C-NCs after the fourth infusion show excellent infusion and few voids, suggesting that high hardness will be achieved. This thesis also explores and develops synthesis techniques for metal matrix nanocomposites (MMNCs), focusing on an aluminum matrix. As the surface energy of ACNTs is not conducive to wetting by Al (and many other metals), this surface energy must first be altered to allow Al matrix infusion for consistent composite fabrication. TiO₂ is conformally decorated onto ~100 [mu]m-tall A-CNT arrays via atomic layer deposition (ALD). A reduction process for the TiO₂ coating was developed, and a reduction to TiH₂ was determined to be promising, as the TiH₂ will not oxidize prior to Al infusion but can easily be reduced in a vacuum oven apparatus designed specifically to meet the needs of Al infusion.en_US
dc.description.abstractTowards MMNCs, both solder and aluminum matrices are infused into the TiO₂-decorated A-CNTs. The solder experiments yielded mixed success, as the results suggest that both the reduction and the vacuum infusion steps are important factors determining successful wetting. Although Al infusion into an A-CNT array was unsuccessful without a dedicated Al infusion apparatus, molten Al was found to wet Ti well, which suggests that the Ti coating may allow for successful A-CNT wetting. Additional recommendations are provided to further refine the A/Al-NC fabrication process to improve Al infusion.en_US
dc.description.statementofresponsibilityby Amy Ruth Vanderhout.en_US
dc.format.extent224 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleSynthesis and mechanical characterization of aligned carbon nanotube metal- and carbon-matrix nanocompositesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.identifier.oclc1191824356en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronauticsen_US
dspace.imported2020-09-03T17:46:44Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentAeroen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record