MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A data-driven approach to bucket-filling control for autonomous excavators

Author(s)
Sandzimier, Ryan Joseph.
Thumbnail
Download1191836399-MIT.pdf (2.025Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
H. Harry Asada.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We develop a data-driven, statistical control method for autonomous excavators. Interactions between soil and an excavator bucket are highly complex and nonlinear, making traditional physical modeling difficult to use for real-time control. Here, we propose a data-driven method, exploiting data obtained from laboratory tests. We use the data to construct a nonlinear, non-parametric statistical model for predicting the behavior of soil scooped by an excavator bucket. The prediction model is built for controlling the amount of soil collected with a bucket. An excavator collects soil by dragging the bucket along the soil surface and scooping the soil by rotating the bucket. It is important to switch from the drag phase to the scoop phase with the correct timing to ensure an appropriate amount of soil has accumulated in front of the bucket. We model the process as a heteroscedastic Gaussian process (GP) based on the observation that the variance of the collected soil mass depends on the scooping trajectory, i.e. the input, as well as the shape of the soil surface immediately prior to scooping. We develop an optimal control algorithm for switching from the drag phase to the scoop phase at an appropriate time and for generating a scoop trajectory to capture a desired amount of soil with high confidence. We implement the method on a robotic excavator and collect experimental data. Experiments show promising results in terms of being able to achieve a desired bucket fill factor with low variance.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 45-46).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127120
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.