MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic primitives facilitate manipulating a whip

Author(s)
Nah, Moses C.
Thumbnail
Download1191836862-MIT.pdf (9.446Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Neville Hogan.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Human dexterity far exceeds that of modern robots, despite a much slower neuromuscular system. Understanding how this is accomplished may lead to improved robot control. The slow neuromuscular system of humans implies that prediction based on some form of internal model plays a prominent role. However, the nature of the model itself remains unclear. To address this problem, we focused on one of the most complex and exotic tools humans can manipulate -- a whip. We tested (in simulation) whether a distant target could be reached with a whip using a (small) number of dynamic primitives, whose parameters could be learned through optimization. This approach was able to manage the complexity of an (extremely) high degree-of-freedom system and discovered the optimal parameters of the upper-limb movement that achieved the task. A detailed model of the whip dynamics was not needed for this approach, which thereby significantly relieved the computational burden of task representation and performance optimization. These results support our hypothesis that composing control using dynamic motor primitives may be a strategy which humans use to enable their remarkable dexterity. A similar approach may contribute to improved robot control..
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 127-133).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127121
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.