MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cyanobacterial evolution and interactions with the Proterozoic world

Author(s)
Moore, Kelsey Reed.
Thumbnail
Download1191838940-MIT.pdf (78.92Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.
Advisor
Tanja Bosak.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Our understanding of the biosphere prior to the rise of complex life is built largely upon microbial mat structures and some exceptionally well-preserved microbial fossils from the Proterozoic (2500 to 540 million years ago). Some of these exceptional fossils are identifiable as cyanobacteria that were preserved by pyrite, amorphous silica (SiO₂) and other minerals. Although a record exists of these organisms, the sparse nature of fossil assemblages and simplicity of many Proterozoic fossil morphologies makes it difficult to identify specific taxa or create a complete picture of the ancient biosphere and how it interacted with the early Earth. Cyanobacteria are thought to have evolved early in Earth history and played a large part in shaping the ancient biosphere and geosphere, but questions remain about their evolution and the ways in which cyanobacterial communities interacted with the Earth during the Proterozoic Eon.
 
In this thesis, I seek to build a more complete understanding the record of Proterozoic cyanobacteria, their responses to environmental perturbations and the chemical conditions and microbe-mineral interactions that characterized the Proterozoic marine realm. I begin by investigating the evolutionary relationships between different cyanobacterial lineages and their relationship to chloroplasts. I then analyze an assemblage of pyritized cyanobacteria that were preserved during the Cryogenian and provide a record of primary productivity in the oceans following a global glaciation. Finally, I investigate factors that enabled the fossilization of some exceptionally preserved cyanobacteria and implications of these mechanisms for cyanobacterial biochemistry, chemical conditions, and interactions between microbes and Proterozoic tidal environments.
 
The combined molecular, fossil and experimental insights allow us to go beyond morphological interpretations of microbial fossils and build a more complete understanding of the evolutionary history of cyanobacteria, the types of cyanobacteria that were preserved during the Proterozoic, the responses of these cyanobacteria to environmental stresses and the interactions of those cyanobacteria with the evolving seawater chemistry.
 
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references.
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127144
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.