MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D reconstruction of human body via machine learning

Author(s)
Hi, Qi,S.M.Massachusetts Institute of Technology.
Thumbnail
Download1191844129-MIT.pdf (3.207Mb)
Alternative title
3 dimensional reconstruction of human body via machine learning
Three-dimensional reconstruction of human body via machine learning
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Ju Li.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Three-dimensional (3D) reconstruction and modeling of the human body and garments from images is a central open problem in computer vision, yet remains a challenge using machine learning techniques. We proposed a framework to generate the realistic 3D human from a single RGB image via machine learning. The framework is composed of an end-to-end 3D reconstruction neural net with a skinned multi-person linear model (SMPL) model by the generative adversarial networks (GANs). The 3D facial reconstruction used the morphable facial model by principal component analysis (PCA) and the LS3D-W database. The 3D garments are reconstructed by the multi-garment net (MGN) to generate UV-mapping and remapped into the human model with motion transferred by archive of motion capture as surface shapes (AMASS) dataset. The clothes simulated by the extended position based dynamics (XPBD) algorithm realized fast and realistic modeling.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 55-59).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127157
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.