MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of anti-biofouling Lubricant-Impregnated Surfaces (LIS) robust to cell-growth-induced instability

Author(s)
Kang, Ha Eun David.
Thumbnail
Download1191844372-MIT.pdf (32.31Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Kripa K. Varanasi.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Unwanted deposition of cells on wetted solids, so-called biofouling, is a serious operational and environmental threat in many underwater and biomedical applications. Over the last decade, Lubricant-Impregnated Surfaces (LIS) has been one of the popular remedies, owing to its unique oil layer that separates solid from cellular media giving no chance for cells to foul. However, a critical bottleneck to this solution has been that retention of the oil could never be permanent, which shortened its anti-fouling efficacy. While understanding the root cause of this oil loss significantly helps prevent such failure, the loss mechanism has not received much attention to date. In this study, we show that secretion of biomolecules from aquatic cells and subsequent change in interfacial tension of the surrounding media can delaminate the oil film, resulting in gradual deterioration of anti-biofouling capability of LIS. We establish a correlation between the decrease in interfacial tension and observed wetting transitions of LIS over the fouling test period. We also visualize the cell medium - oil interface to confirm final wetting states of LIS in situ. We further measure mobility of various algae droplets on such surfaces and scale forces to confirm presence of line force specific to each wetting state. Finally, we propose a LIS regime map that helps determine the design of LIS that can resist oil loss in aquatic cellular environments, increasing long-term anti-biofouling efficacy.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 28-30).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127162
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.