Show simple item record

dc.contributor.authorWang, Xiaogang
dc.contributor.authorGrimson, W. Eric L.
dc.contributor.authorWestin, Carl-Fredrik
dc.date.accessioned2020-09-04T19:43:22Z
dc.date.available2020-09-04T19:43:22Z
dc.date.issued2010-08
dc.date.submitted2010-06
dc.identifier.issn1095-9572
dc.identifier.urihttps://hdl.handle.net/1721.1/127187
dc.description.abstractIn this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is automatically learned driven by data with a Dirichlet process (DP) prior instead of being manually specified. After the models of bundles have been learned from training data without supervision, they can be used as priors to cluster/classify fibers of new subjects for comparison across subjects. When clustering fibers of new subjects, new clusters can be created for structures not observed in the training data. Our approach does not require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple subjects. We present results on several data sets, the largest of which has more than 120,000 fibers. ©2010 Elsevier Inc.en_US
dc.description.sponsorshipNIH (R01 MH074794)en_US
dc.description.sponsorshipNIH (P41 RR13218)en_US
dc.description.sponsorshipNIH (U54 EB005149)en_US
dc.description.sponsorshipNIH (U54 EB005149)en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttps://dx.doi.org/10.1016/j.neuroimage.2010.07.050en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleTractography segmentation using a hierarchical Dirichlet processes mixture modelen_US
dc.typeArticleen_US
dc.identifier.citationWang, Xiaogang et al., "Tractography segmentation using a hierarchical Dirichlet processes mixture model." NeuroImage 54, 1 (January 2011): 290-302 doi. 10.1016/j.neuroimage.2010.07.050 ©2010 Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalNeuroImageen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-05-30T13:26:45Z
dspace.date.submission2019-05-30T13:26:46Z
mit.journal.volume54en_US
mit.journal.issue1en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record