dc.contributor.author | Wang, Xiaogang | |
dc.contributor.author | Grimson, W. Eric L. | |
dc.contributor.author | Westin, Carl-Fredrik | |
dc.date.accessioned | 2020-09-04T19:43:22Z | |
dc.date.available | 2020-09-04T19:43:22Z | |
dc.date.issued | 2010-08 | |
dc.date.submitted | 2010-06 | |
dc.identifier.issn | 1095-9572 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/127187 | |
dc.description.abstract | In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is automatically learned driven by data with a Dirichlet process (DP) prior instead of being manually specified. After the models of bundles have been learned from training data without supervision, they can be used as priors to cluster/classify fibers of new subjects for comparison across subjects. When clustering fibers of new subjects, new clusters can be created for structures not observed in the training data. Our approach does not require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple subjects. We present results on several data sets, the largest of which has more than 120,000 fibers. ©2010 Elsevier Inc. | en_US |
dc.description.sponsorship | NIH (R01 MH074794) | en_US |
dc.description.sponsorship | NIH (P41 RR13218) | en_US |
dc.description.sponsorship | NIH (U54 EB005149) | en_US |
dc.description.sponsorship | NIH (U54 EB005149) | en_US |
dc.language.iso | en | |
dc.publisher | Elsevier BV | en_US |
dc.relation.isversionof | https://dx.doi.org/10.1016/j.neuroimage.2010.07.050 | en_US |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.source | PMC | en_US |
dc.title | Tractography segmentation using a hierarchical Dirichlet processes mixture model | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Wang, Xiaogang et al., "Tractography segmentation using a hierarchical Dirichlet processes mixture model." NeuroImage 54, 1 (January 2011): 290-302 doi. 10.1016/j.neuroimage.2010.07.050 ©2010 Authors | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.relation.journal | NeuroImage | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2019-05-30T13:26:45Z | |
dspace.date.submission | 2019-05-30T13:26:46Z | |
mit.journal.volume | 54 | en_US |
mit.journal.issue | 1 | en_US |
mit.metadata.status | Complete | |