Show simple item record

dc.contributor.advisorCaitlin Mueller.en_US
dc.contributor.authorDesai, Ishani,M. Eng.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2020-09-15T21:50:14Z
dc.date.available2020-09-15T21:50:14Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127284
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 80-83).en_US
dc.description.abstractTimber structures have seen a resurgence in structural design in recent years due to a desire to reduce embodied carbon in the built environment. While many of these structures use standardized or regular elements, the recent revolution in digital fabrication has resulted in a variety of more complex and irregular timber forms, usually achieved through milling or other machine-driven production processes. However, the organic nature of wood has also inspired architects and engineers to harness naturally occurring formal variation, for example, in the geometries of tree forks and branches, to produce designs that are more directly responsive to their constitutive materials. Compared to conventional fabrication processes for timber, in which the material is often processed several times to achieve characteristics that are present in the original material, this approach embodies little waste in material and effort.en_US
dc.description.abstractNaturally occurring branching tree forks seem to exhibit outstanding strength and material efficiency as a natural moment connection, which underpins previous research investigating their use in design. This thesis advances the use of tree forks as a natural connection in structures through two specific contributions. First, the paper establishes a flexible matching-based methodology for designing structures with a pre-existing library of tree fork nodes (based on actual available materials from salvaged trees, for example), balancing an initial target design, node matching quality, and structural performance. The methodology uses a combination of Iterative Closest Point and Hungarian Algorithms as a real-time computational approach for matching nodes in the library to nodes in the design.en_US
dc.description.abstractThe thesis presents results that systematically test this methodology by studying how matching quality varies depending on the number and species of tree forks available in the library and relates this back to the mechanical properties of tree branches found through physical testing. Second, mechanical laboratory testing of tree fork nodes of various tree species (available locally in the area) is presented to quantify the structural capacity of these connections and observe the behavior under tree fork load transfers. A structural score is developed to characterize the tolerance of tree fork nodes to imperfect matches in terms of structural capacity; these resulting geometries are compared to the previous matching-based scoring system. The resulting approach is projected forward as a framework for a more general computational approach for designing with existing material systems and geometries that can also be expanded beyond tree forks.en_US
dc.description.statementofresponsibilityby Ishani Desai.en_US
dc.format.extent108 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleDesigning structures with tree forks : mechanical characterization and generalized computational design approachen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.identifier.oclc1191844104en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Civil and Environmental Engineeringen_US
dspace.imported2020-09-15T21:50:14Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentCivEngen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record