MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative study of bracing patterns and materials for tall timber buildings

Author(s)
Kawar, Alexandra(Alexandra Alba)
Thumbnail
Download1191897184-MIT.pdf (20.07Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
Gordana Herning.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Exploration of new designs for urban environments is increasingly focusing on reducing carbon emissions generated by construction and operation of tall buildings. With recent technological advances in timber construction and its potential to mitigate the carbon embodied in structural materials, tall timber buildings are gaining acceptance as various forms are considered for their designs. Recently built and proposed buildings demonstrate the use of mass timber to resist gravity and lateral loads. There are inherent efficiencies in placing lateral load resisting systems on the perimeter of a structure along with the possibilities to integrate versatile geometric patterns and effective structural solutions. However, timber material properties may lead to elements of larger volume than those made of steel or concrete. This study compares structural stiffness gains and carbon emission reductions for exterior bracing created in timber and timber-steel hybrid configurations. Numerical analyses are used to explore braced frame geometries and layouts for the steel and timber elements, to predict structural response, and compare the effects of material placement.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 77-81).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127286
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.