MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithmic advancements in discrete optimization : applications to machine learning and healthcare operations

Author(s)
Pauphilet, Jean(Jean A.)
Thumbnail
Download1191901158-MIT.pdf (5.184Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Dimitris Bertsimas.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the next ten years, hospitals will operate like air-traffic control centers whose role is to coordinate care across multiple facilities. Consequently, the future of hospital operations will have three salient characteristics. First, data. The ability to process, analyze and exploit data effectively will become a vital skill for practitioners. Second, a holistic approach, since orchestrating care requires the concurrent optimization of multiple resources, services, and time scales. Third, real-time personalized decisions, to respond to the increasingly closer monitoring of patients. To support this transition and transform our healthcare system towards better outcomes at lower costs, research in operations and analytics should address two concurrent goals: First, develop new methods and algorithms for decision-making in a data-rich environment, which answer key concerns from practitioners and regulators, such as reliability, interpretability, and fairness.
 
Second, put its models and algorithms to the test of practice, to ensure a path towards implementation and impact. Accordingly, this thesis is comprised of two parts. The first three chapters present methodological contributions to the discrete optimization literature, with particular emphasis on problems emerging from machine learning under sparsity. Indeed, the most important operational decision-making problems are by nature discrete and their sizes have increased with the widespread adoption of connected devices and sensors. In particular, in machine learning, the gigantic amount of data now available contrasts with our limited cognitive abilities. Hence, sparse models, i.e., which only involve a small number of variables, are needed to ensure human understanding. The last two chapters present applications and implementation of machine learning and discrete optimization methods to improve operations at a major academic hospital.
 
From raw electronic health records of patients, we build predictive models to predict patient flows and prescriptive models to optimize patient-bed assignment in real-time. More importantly, we implement our models in a 600-bed institution. Our impact is two-fold: methodological and operational. Integrating advanced analytics in their daily operations and building a data-first culture constitutes a major paradigm shift.
 
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 235-253).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127298
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.